AMPLITUDE DOMAIN-FEQUENCY REGRESSION

Francisco Parra

October 29, 2024

Introduction

The time series can be seen from an aplitude-time domain or an amplitude-frequency domain. The amplitude-frequency domain are used to analyze properties of filters used to decompose a time series into a trend, seasonal and irregular component investigating the gain function to examine the effect of a filter at a given frequency on the amplitude of a cycle for a particular time series. The ability to decompose data series into different frequencies for separate analysis and later recomposition is the first fundamental concept in the use of spectral techniques in forecasting, such as regression espectrum band, have had little development in econometric work. The low diffusion of this technique has been associated with the computing difficulties caused the need to work with complex numbers, and inverse Fourier transform in order to convert everything back into real terms. But the problems from the use of the complex Fourier transform may be circumvented by carrying out the Fourier transform of the data in real terms, pre-multiplied the time series by the orthogonal matrix Z whose elements are defined in Harvey (1978).

The spectral analysis commences with the assumption that any series can be transformed into a set of sine and cosine waves, and can be used to both identify and quantify apparently nonperiodic short and long cycle processes (first section). In Band spectrum regression (second section), is a brief summary of the regression of the frequency domain (Engle, 1974) The application of spectral analysis to data containing both seasonal (high frequency) and non-seasonal (low frequency) components may produce adventages, since these different frequencies can be modelled separately and then may be re-combined to produce fitted values. Durbin (1967 and 1969) desing a technique for studying the general nature of the serial dependence in a satacionary time series, that can be use to statistic contraste in This type of exercises (third section). The time-varying regression, or the regression whit the vector of parameters time.varying can be understood in this context (four section).

Spectral analysis

Nerlove (1964) and Granger (1969) were the two foremost researchers on the application of spectral techniques to economic time series.

The use of spectral analysis requires a change of focus from an amplitudetime domain to an amplitude-frequency domain. Thus spectral analysis commences with the assumption that any series, Xt, can be transformed into a set of sine and cosine waves such as:

$$X_t = \eta + \sum_{j=1}^{N} [a_j \cos(2\pi \frac{ft}{n}) + b_j \sin(2\pi \frac{ft}{n})]$$
(1)

where η is the mean of the series, a_j and b_j are the amplitude, f is the frequency over a span of n observations, t is a time index ranging from 1 to N where N is the number of periods for which we have observations, the fraction (ft/n) for different values of t converts the discrete time scale of time series into a proportion of 2 and j ranges from 1 to n where n = N/2. The highest observable frequency in the series is n/N (i.e., 0.5 cycles per time interval). High frequency dynamics (large f) are akin to short cycle processes while low frequency dynamics (small f) may be likened to long cycle processes. If we let $\frac{ft}{n} = w$ then equation (1) can be re-written more compactly as:

$$X_t = \eta + \sum_{j=1}^{N} [a_j \cos(\omega_j) + b_j \sin(\omega_j)]$$
(2)

Spectral analysis can be used to both identify and quantify apparently nonperiodic short and long cycle processes. A given series X_t may contain many cycles of different frequencies and amplitudes and such combinations of frequencies and amplitudes may yield cyclical patterns which appear non-periodic with irregular amplitude. In fact, in such a time series it is clear from equation (2) that each observation can be broken down into component parts of different length cycles which, when added together (along with an error term), comprise the observation (Wilson and Perry, 2004).

The overall effect of the Fourier analysis of N observation to a time date is to partition the variability of the series into components at frequencies $\frac{2\pi}{N}$, $\frac{4\pi}{N},...,\pi$. The component at frequency $\omega_p = \frac{2\pi p}{N}$ if called the pth harmonic. For $p \neq \frac{N}{2}$, the equivalent form to write the pth harmonic are:

$$a_p cos\omega_p t + b_p sin\omega_p t = R_p cos(\omega_p t + \phi_p)$$

where $R_p = \sqrt{a_p + b_p}$ and $\phi_p = tan^{-1}(\frac{-b_p}{a_p})$

The plot of $I(\omega) = \frac{NR_p^2}{4\pi}$ against ω is called the periodogram of time data. Trend will produce a peak at zero frequency, while seasonal variations produces peaks at the seasonal frquency and at integer multiples of the seasonal frequency. Then, when a periodogram has a large peak at some frequency ω then related peaks may occurr at 2ω , 3ω ,....(Chaftiel, C,2004)

Band spectrum regression

Hannan (1963) first proposed regression analysis in the frequency domain, later examining the use of this technique in estimating distributed lag models (Hannan, 1965, 1967). Engle (1974) demonstrated that regression in the frequency domain has certain advantages over regression in the time domain. Consider the linear regression model

$$y = X\beta + u \tag{3}$$

where X is an n x k matrix of fixed observations on the independent variables, β is a k x I vector of parameters, y is an n x 1 vector of observations on the dependent variable, and u is an n x I vector of disturbance terms each with zero mean and constant variance, σ^2 .

The model may be expressed in terms of frequencies by applying a finite Fourier transform to the dependent and independent variables. For Harvey (1978) there are a number of reasons for doing this. One is to permit the application of the technique known as 'band spectrum regression', in which regression is carried out in the frequency domain with certain wavelengths omitted. Another reason for interest in spectral regression is that if the disturbances in (3) are serially correlated, being generated by any stationary stochastic process, then regression in the frequency domain will yield an asymptotically efficient estimator of β .

Engle (1974) compute the full spectrum regression with he complex finite Fourier transform based on the n x n matrix W, in which element (t, s) is given by

 $w_{ts} = \frac{1}{\sqrt{n}} e^{i\lambda_t s}$, s = 0, 1, ..., n-1where $\lambda_t = 2\pi \frac{t}{n}$, t=0,1,...,n-1, and $i = \sqrt{-1}$. Pre-multiplying the observations in observations in (3) by W yields

$$\dot{y} = \dot{X}\beta + \dot{u} \tag{4}$$

where $\dot{y} = Wy, \dot{X} = WX$, and $\dot{u} = Wu$.

If the disturbance vector in (4) obeys the classical assumptions, viz. E[u] = 0and $E[uu'] = \sigma^2 I_n$. then the transformed disturbance vector, \dot{u} , will have identical properties. This follows because the matrix W is unitary, i.e., $WW^T = I$, where W^T is the transpose of the complex conjugate of W. Furthermore the observations in (4) contain precisely the same amount of information as the untransformed observations in (3).

Application of OLS to (4) yields, in view of the properties of \dot{u} , the best linear unbiased estimator (BLUE) of β . This estimator is identical to the OLS estimator in (3), a result which follows directly on taking account of the unitary property of W. When the relationship implied by (4) is only assumed to hold for certain frequencies, band spectrum regression is appropriate, and this may be carried out by omitting the observations in (4) corresponding to the remaining frequencies. Since the variables in (4) are complex, however, Engle (1974) suggests an inverse Fourier transform in order to convert everything back into real terms (Harvey, 1974).

The problems which arise from the use of the complex Fourier transform may be circumvented by carrying out the Fourier transform of the data in real terms. In order to do this the observations in (3) are pre-multiplied by the orthogonal matrix Z whose elements are defined as follows (Harvey, 1978):

$$z_{ts} = \begin{cases} \left(\frac{1}{n}\right)^{\frac{-1}{2}} & t = 1\\ \left(\frac{2}{n}\right)^{\frac{1}{2}} \cos\left[\frac{\pi t(s-1)}{n}\right] & t = 2, 4, 6, ..(n-2) \text{ or } (n-1)\\ \left(\frac{2}{n}\right)^{\frac{1}{2}} \sin\left[\frac{\pi (t-1)(s-1)}{T}\right] & t = 3, 5, 7, .., (n-1) \text{ or } n\\ (n)^{\frac{-1}{2}} (-1)^{s+1} & t = n \text{ if n is even } , s = 1, ...n, \end{cases}$$

The resulting frequency domain regression model is:

$$y^{**} = X^{**}\beta + v \tag{5}$$

where $y^{**} = Zy, X^{**} = ZX$ and v = Zu.

In view of the orthogonality of Z, $E[vv'] = \sigma^2 I_n$ when $E[uu'] = \sigma^2 I_n$ and the application of OLS to (5) gives the BLUE of β .

Since all the elements of y^{**} and X^{**} are real, model may be treated by a standard regression package. If band spectrum regression is to be carried out, the number of rows in y^{**} and X^{**} is reduced accordingly, and so no problems arise from the use of an inappropriate number of degrees of freedom.

Amplitude domain-frequency regression

Consider now the linear regression model

$$y_t = \beta_t x_t + u_t \tag{6}$$

where x_t is an n x 1 vector of fixed observations on the independent variable, β_t is a n x 1 vector of parameters, y is an n x 1 vector of observations on the dependent variable, and u_t is an n x 1 vector de errores distribuidos con media cero y varianza constante.

Whit the assumption that any series, y_t, x_t, β_t and ut, can be transformed into a set of sine and cosine waves such as:

$$y_t = \eta^y + \sum_{j=1}^N [a_j^y \cos(\omega_j) + b_j^y \sin(\omega_j)]$$
$$x_t = \eta^x + \sum_{j=1}^N [a_j^x \cos(\omega_j) + b_j^x \sin(\omega_j)]$$

Pre-multiplying (6) by Z:

 $\dot{y} = \dot{x}\dot{\beta} + \dot{u}$

(7)

where $\dot{y} = Zy, \dot{x} = Zx, \dot{\beta} = Z\beta$ y $\dot{u} = Zu$ The system (7) can be rewritten as (see appendix):

$$\dot{y} = Z x_t I_n Z^T \dot{\beta} + Z I_n Z^T \dot{u}$$

(8)

If we call $\dot{e} = ZI_n Z^T \dot{u}$, It can be found the $\dot{\beta}$ that minimize the sum of squared errors $E_T = Z^T \dot{e}$.

Once you have found the solution to this optimization, the series would be transformed into the time domain.

Example: Regression in frequency domain into the GDP and emploiment in Canada

The function transforms the time series in amplitude-frequency domain, order the fourier coefficient by the comun frequencies in cross-spectrum, make a band spectrum regression of the serie y_t and x_t for every set of fourier coefficients, and select the model to pass the significance bands to periodogram cumulative (Venables and Ripley,2002).

> library(descomponer)
> data(PIB)
> data (celec)
> rdf(celec,PIB)

\$datos

444.00D						
	Y	Х	F	res		
1	12458	65.72689	12438.74	19.26350		
2	12822	67.48491	12909.66	-87.65586		
3	13345	69.97484	13576.63	-231.63133		
4	14288	72.98793	14383.75	-95.74524		
5	15309	76.26133	15260.59	48.41183		
6	16207	80.29488	16341.05	-134.05185		
7	17290	83.50754	17201.62	88.37559		
8	17805	85.91239	17845.81	-40.80958		
9	19037	88.65090	18579.37	457.62803		
10	19915	91.45826	19331.38	583.62284		
11	20867	94.86328	20243.48	623.52297		
12	21543	98.82299	21304.16	238.83875		
13	21935	102.54758	22301.86	-366.86407		
14	22253	103.69194	22608.40	-355.40283		
15	21757	99.98619	21615.75	141.25334		
16	22409	100.00000	21619.45	789.55406		
17	20636	99.38237	21454.00	-818.00190		
18	20663	97.30654	20897.95	-234.95105		
19	19952	96.10971	20577.36	-625.35719		

\$Fregresores

	1	2
X1	1	88.15634053
X2	0	-5.68444051

ΧЗ	0	-9.44842574
X4	0	-2.21612456
X5	0	-2.62417102
X6	0	-0.79654010
X7	0	-2.39713050
X8	0	-1.53918705
X9	0	-1.43696347
X10	0	-1.18967332
X11	0	-0.69982435
X12	0	-0.92147295
X13	0	-0.82056751
X14	0	-1.14883279
X15	0	-0.66396550
X16	0	-1.26963280
X17	0	-0.21300734
X18	0	-1.09411248
X19	0	-0.01302282

\$Tregresores

2 1 [1,] 0.2294157 15.07878 [2,] 0.2294157 15.48210 [3,] 0.2294157 16.05333 [4,] 0.2294157 16.74458 [5,] 0.2294157 17.49555 [6,] 0.2294157 18.42091 [7,] 0.2294157 19.15794 [8,] 0.2294157 19.70965 [9,] 0.2294157 20.33791 [10,] 0.2294157 20.98196 [11,] 0.2294157 21.76313 [12,] 0.2294157 22.67155 [13,] 0.2294157 23.52603 [14,] 0.2294157 23.78856 [15,] 0.2294157 22.93841 [16,] 0.2294157 22.94157 [17,] 0.2294157 22.79988 [18,] 0.2294157 22.32365 [19,] 0.2294157 22.04908

\$Nregresores [1] 2

\$sse [1] 3116177

\$gcv [1] 204869.8

> gtd(rdf(celec,PIB)\$datos\$res)

Make the forecast $Y_t(h) = \beta_0 + \beta_1 X_t(h) + \dots$, you need to have the expansion for $X_t(h)$ of the development

$$X_t(h) = \eta + \sum_{j=1}^{N} [a_j \cos(\omega_j) + b_j \sin(\omega_j)]$$
(7)

and this development using the orthogonal transformations W to have regressors in the frequency and time domain has to be done with n observations. Therefore, we have to build a new base of regressors of size n that have to be elaborated with observations X_t , being now $t = h, h+1, h+2, \ldots, n, n+1, n+2, \ldots, n+h$.

```
> mod1=rdf(celec,PIB)
> newdata=c(100)
> predictrdf(mod1,newdata)
fit lwr upr
```

20577.36 19641.02 21513.70

Seasonal Decomposition by the Fourier Coefficients

The amplitude domain-frequency regression method could be use to decompose a time series into seasonal, trend and irregular components of a time serie y_t of frequency b or number of times in each unit time interval. For example, one could use a value of 7 for frequency when the data are sampled daily, and the natural time period is a week, or 4 and 12 when the data are sampled quarterly and monthly and the natural time period is a year.

If the observation are teken at equal interval of length, Δt , then the angular frequency is $\omega = frac\pi\Delta t$. The equivalent frequency expressed in cycles per unit time is $f = \frac{\omega}{2\pi} = \frac{1}{2} \Delta t$. Whit only one observation per year, $\omega = \pi$ radians per year or $f = \frac{1}{2}$ cycle per year (1 cicle per two years), variation whit a wavelength of one year has fequency $\omega = 2\pi$ radians per year or f = 1 cicle per year.

For example, in a monthly time serie of N = 100 observation, the seasonal cycles or the wavelenghth of one year has frequency $f = \frac{100}{12} = 8,33$ cycles for 100 dates. If the time serie are 8 full year, the less seasonal frequency are 1 cycle for year, or 8 cycle for 96 observation. The integer multiplies are $2\frac{N}{12}, 3\frac{N}{12}, \ldots$, and wavelenghth low of one year has frequency are $f < \frac{N}{12}$.

We can use (8) to estimate the fourier coefficient in time serie y_t :

$$\dot{y} = ZtI_n Z^T \dot{\beta} + ZI_n Z^T \dot{u}$$

(9)

being $t=(1,1,...,1)_N$ or $t=(1,2,3,...,N)_N.$ If $t=(1,1,1,1,...,1)_N$,

$$A = ZtI_n Z^T = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & . & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & . & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & . & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & . & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & . & 0 & 0 \\ . & . & . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & . & 0 & 1 \end{pmatrix}$$

Then

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & . & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & . & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & . & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & . & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & . & 0 & 0 \\ . & . & . & . & . & . & . \\ 0 & 0 & 0 & 0 & 0 & . & 0 & 0 \end{pmatrix}$$

are use in (9) to make the regression band spectrum with the first four coefficient of fourier of the serie \dot{y} .

The first $2\frac{N}{12} - 1$ rows the A matrix are used to estimate the fourier coefficients corresponding to cycles of low frequency, trend cycles, and rows $2\frac{N}{12}$ and $2\frac{N}{12} + 1$ are used to estimate the fourier coefficients of 1 cicle for year. The integer multiplies re the rows $6\frac{N}{12}$, $6\frac{N}{12} + 1$, $8\frac{N}{12}$...should be used to obtain the seasonal frequency.

Example:descomponse by amplitude domain-frequency regression. IPI base 2009 in Cantabria

The Industrial Price Index of Cantabria is presented in the table below

The time serie by trend an seasonal is named TDST. TD is calculate by band spectrum regression of the serie y_t and the temporal index t, in which regression is carried out in low amplitude- frequency. The seasonal serie STresult to take away TD to TDST, and the irregular serie IR result to take away TDST to y_t . The temporal index t used in the exemple are the OLS regression into IPI and the trend index $t = (1, 2, 3, ..., N)_N$.

> data(ipi)
> descomponer(ipi,12,1)\$datos

	У	TDST	TD	ST	IR
1	90.2	93.49148	97.29581	-3.8043288	-3.29147706
2	98.8	96.76618	97.40651	-0.6403355	2.03382281
3	92.1	105.16011	97.55957	7.6005392	-13.06010720
4	102.7	100.11383	97.73672	2.3771122	2.58616508
5	107.0	105.36545	97.91825	7.4471960	1.63455301
6	98.3	102.67619	98.08444	4.5917463	-4.37619107

_					
7	100.9	99.14371		0.9265446	1.75628888
8	66.3	72.41965		-25.8816898	-6.11964836
9	101.4	100.48346	98.32624	2.1572165	0.91654243
10	111.8	107.36550	98.28651	9.0789861	4.43450007
11	111.4	105.66091	98.18276	7.4781476	5.73909316
12	85.2	86.24833	98.02170	-11.7733676	-1.04832922
13	94.4	94.02740	97.81584	-3.7884330	0.37259602
14	96.2	96.94503	97.58269	-0.6376590	-0.74503016
15	106.5	104.91231	97.34356	7.5687593	1.58768510
16	101.1	99.48917	97.12200	2.3671694	1.61083240
17	103.5	104.35813	96.94209	7.4160356	-0.85812832
18	99.9	101.39913	96.82661	4.5725269	-1.49913452
19	101.4	97.71791	96.79525	0.9226651	3.68208654
20	58.6	71.08983		-25.7732827	
21	99.8	99.18765	97.03947	2.1481777	0.61234851
22	112.7	106.36795	97.32701	9.0409316	6.33205472
22	103.8	105.16833	97.72154	7.4467921	-1.36833257
23 24	89.0	86.48826		-11.7239851	2.51173577
24 25	91.2	95.00995	98.78249	-3.7725372	-3.80995442
	91.2		98.78249 99.41100		
26 07		98.77602		-0.6349825	-1.47601811
27		107.61046	100.07348	7.5369794	2.58954158
28	105.7	103.10165	100.74442	2.3572266	2.59835269
29	109.9	108.78390	101.39902	7.3848751	1.11610157
30	109.1	106.56835	102.01504	4.5533075	2.53165476
31	104.3	103.49319	102.57441	0.9187856	0.80680894
32	71.9	77.39968		-25.6648756	-5.49967709
33	107.1	105.61838	103.47924	2.1391389	1.48162425
34	108.5	112.82176	103.81888	9.0028771	-4.32175586
35	116.6	111.50579	104.09036	7.4154366	5.09420740
36	96.5	92.63167	104.30628	-11.6746027	3.86832534
37	94.1	100.72716	104.48380	-3.7566413	-6.62715880
38	102.4	104.01079	104.64309	-0.6323060	-1.61078761
39	109.4	112.31078	104.80558	7.5051995	-2.91077599
40	109.0	107.33936	104.99208	2.3472838	1.66063840
41	113.3	112.57479	105.22108	7.3537147	0.72520870
42	116.5	110.04125	105.50717	4.5340881	6.45874503
43	107.9	106.77478	105.85988	0.9149060	1.12521823
44	76.7	80.72646	106.28293	-25.5564685	-4.02646394
45	111.0	108.90415	106.77405	2.1301001	2.09585363
46	109.3	116.29003	107.32521	8.9648227	-6.99002963
47	119.5	115.30756	107.92348	7.3840810	4.19244058
48	95.1	96.92699	108.55221	-11.6252202	-1.82698928
40 49	109.6	105.45181	108.33221	-3.7407455	4.14819131
		105.45181	109.19255		-0.19553175
50 E 1	109.0			-0.6296296	
51 50	125.2	117.90530	110.43188	7.4734196	7.29469750
52	104.8	113.33469	110.99734	2.3373410	-8.53468571

53	123.7	118.83279	111.51024	7.3225543	4.86720973
54	119.7	116.47907	111.96420	4.5148687	3.22093379
55	105.4	113.26925	112.35822	0.9110265	-7.86924913
56	84.1	87.24847	112.69653	-25.4480614	-3.14846658
57	112.1	115.10896	112.98790	2.1210613	-3.00895781
58	121.6	122.17131	113.24454	8.9267682	-0.57131077
59	120.0	120.83332	113.48059	7.3527255	-0.83331896
60	98.6	102.13448	113.71031	-11.5758378	-3.53447654
61	117.6	110.22138	113.94623	-3.7248497	7.37861665
62	117.7	113.57038	114.19733	-0.6269531	4.12962237
63	129.7	121.90910	114.46747	7.4416398	7.79089518
64	111.8	117.08157	114.75418	2.3273982	-5.28157443
65		122.33939	115.04800	7.2913939	2.86060751
66		119.82801	115.33236	4.4956493	1.37198834
67	116.8	116.49127	115.58412	0.9071470	0.30873208
68	88.2	90.43504		-25.3396543	-2.23503871
69	113.7	117.98378	115.87175	2.1120225	-4.28377603
09 70	129.0	124.73008	115.84137	8.8887137	4.26992094
	129.0				-1.27177389
71		122.97177		7.3213700	
72	94.4			-11.5264553	-9.34264377
73	110.3	110.96455	114.67351	-3.7089538	-0.66455342
74	115.3	113.22345	113.84773	-0.6242766	2.07655123
75		120.19554		7.4098599	-7.29553587
76		113.80977	111.49232	2.3174554	8.59022509
77		117.24442	109.98419	7.2602334	-0.34442458
78	111.2	112.76564	108.28921	4.4764299	-1.56563785
79	115.0	107.34901	106.44574	0.9032674	7.65098972
80	77.1	79.26977	104.50102	-25.2312472	-2.16976916
81	106.3	104.61189	102.50890	2.1029837	1.68811145
82	115.9	109.37796	100.52731	8.8506592	6.52203544
83	106.7	105.90524	98.61523	7.2900144	0.79475657
84	83.0	85.35274	96.82981	-11.4770729	-2.35273788
85	92.2	91.53037	95.22343	-3.6930580	0.66962853
86	94.3	93.21952	93.84112	-0.6216001	1.08048013
87	96.7	100.09652	92.71844	7.3780800	-3.39651790
88	87.2	94.18741	91.87990	2.3075126	-6.98741330
89	91.0	98.56716	91.33809	7.2290730	-7.56716185
90	91.0	95.55065	91.09344	4.4572105	-4.55065228
91	95.3	92.03412	91.13474	0.8993879	3.26587643
92	70.2	66.31734	91.44018	-25.1228401	3.88265582
93	98.3	94.07301	91.97906	2.0939449	4.22699051
94	106.9	101.52634	92.71374	8.8126048	5.37365804
95	100.3	101.32034	93.60191	7.2586589	2.53942747
95 96	86.8	83.17132	93.00191	-11.4276905	3.62867995
97 08	90.5	91.98328	95.66044	-3.6771622	-1.48327720
98	91.4	96.12477	96.74369	-0.6189236	-4.72476795

99 10		05.15641	97.81010	7.3463001	2.54359493
		01.12380	98.82623	2.2975698	-0.52379809
		06.96265	99.76474	7.1979126	-5.06264944
102 10		05.04288	100.60489	4.4379911	0.75712158
103 10	1.5 1	02.22804	101.33254	0.8955084	-0.72804413
104 7	5.4	76.92534	101.93977	-25.0144330	-1.52533899
105 10	1.4 1	04.50915	102.42425	2.0849062	-3.10915268
106 10	9.1 1	11.56283	102.78828	8.7745503	-2.46283178
107 11	5.8 1	10.26517	103.03786	7.2273034	5.53483418
108 9	8.9	91.80330	103.18160	-11.3783080	7.09670316
109 9	7.6	99.56851	103.22978	-3.6612663	-1.96851275
110 10	2.7 1	02.57721	103.19346	-0.6162472	0.12278761
111 11	3.2 1	10.39836	103.08384	7.3145202	2.80163645
112 10	4.3 1	05.19939	102.91176	2.2876270	-0.89938650
113 10	7.6 1	09.85412	102.68737	7.1667522	-2.25412104
114 10	3.5 1	06.83880	102.42003	4.4187717	-3.33880379
115 9	7.9 1	03.00994	102.11831	0.8916288	-5.10993901
116 8	6.3	76.88402	101.79005	-24.9060259	9.41597537
117 10	8.4 1	03.51838	101.44251	2.0758674	4.88162432
118 10	3.5 1	09.81895	101.08246	8.7364958	-6.31895228
		07.91219	100.71625	7.1959478	-4.41219319
		89.02086	100.34979	-11.3289256	-0.02086087
121 9-		96.34308	99.98845	-3.6453705	-1.84307991
		99.02332	99.63689	-0.6135707	-1.32331522
		06.58152	99.29878	7.2827404	6.31847874
		01.25429	98.97660	2.2776842	-3.65428531
		05.80694	98.67135	7.1355917	5.79306067
		02.78193	98.38238	4.3995523	1.01806936
		98.99509	98.10734	0.8877493	-1.69508506
		73.04459		-24.7976188	13.55540629
		99.64840	97.58158	2.0668286	-4.94840385
		06.01739	97.31895	8.6984413	-5.71739065
		04.21194	97.04735	7.1645923	-8.81193975
		85.48037	96.75991	-11.2795431	-0.08036676
		92.82113	96.45061	-3.6294747	3.47886911
		95.50404	96.11493	-0.6108942	-1.00403907
		03.00152	95.75056	7.2509605	-4.90151667
		97.62554	95.35780	2.2677414	7.37445589
		02.04441	94.93997	7.1044313	-1.04440606
		98.88375	94.50342	4.3803329	-0.08375036
		94.94119	94.05732	0.8838697	-3.44119438
		68.92406	93.61328	-24.6892117	11.57593655
		95.24231	93.18452	2.0577898	-0.64231218
		01.44547	93.18452 92.78508	8.6603868	-0.84546802
		99.56192	92.42868	7.1332368	-7.76191538
		80.89749			
144 8	2.1	00.09149	<i>3</i> 2.12/03	-11.2301607	1.20250882

145 91.8 88.08756 91.89189 -3.8043288 3.71244372 146 92.6 91.08754 91.72788 -0.6403355 1.51245564 147 100.1 99.23859 91.63805 7.6005392 0.86141476 148 95.4 93.99740 91.62029 2.3771122 1.40259993

> gdescomponer(ipi,12,1,2002,1)

Bibliography

Chatfield, Cris (2004). "The Analysis of Time Series: An Introduction (6th edn.)", 2004. CRC Press

Engle, Robert F. (1974), "Band Spectrum Regression", International Economic Review 15,1-11.

Hannan, E.J. (1963), "Regression for Time Series", in Rosenblatt, M. (ed.), Time Series Analysis, New York, John Wiley.

Harvey, A.C. (1978), "Linear Regression in the Frequency Domain", International Economic Review, 19, 507-512.

Venables and Ripley (2002), "Modern Applied Statistics with S" (4th edition, 2002).

Wilson, P.J. and Perry, L.J. (2004). "Forecasting Australian Unemployment Rates Using Spectral Analysis" Australian Jurnal of Labour Economics, vol 7,no 4, December 2004, pp 459-480.

Appendix

The multiplication of two harmonic series of different frequency:

$$[a_j\cos(\omega_j) + b_j\sin(\omega_j)]x[a_i\cos(\omega_i) + b_i\sin(\omega_i)]$$

gives the following sum:

$$a_j a_i \cos(\omega_j) \cos(omega_i) + a_j b_i \cos(\omega_j) \sin(\omega_i)$$

$$+a_ib_j\sin(\omega_j)\cos(\omega_i)b_i\sin(\omega_i)+b_jb_i\sin(\omega_j)\sin(\omega_i)$$

that using the identity of the products of sines and cosines gives the following results:

$$\frac{a_j a_i + b_j b_i}{2} \cos(\omega_j - \omega_i) + \frac{b_j a_i - b_j a_i}{2} \sin(\omega_j - \omega_i)$$
$$+ \frac{a_j a_i - b_j b_i}{2} \cos(\omega_j + \omega_i) + \frac{b_j a_i + b_j a_i}{2} \sin(\omega_j + \omega_i)$$

The circularity of ω determines that the product of two harmonics series resulting in a new series in which the Fourier coefficients it's a linear combination of the Fourier coefficients of the two harmonics series.

In the following two series:

$$y_t = \eta^y + a_0^y \cos(\omega_0) + b_0^y \sin(\omega_0) + a_1^y \cos(\omega_1) + b_1^y \sin(\omega_1) + a_2^y \cos(\omega_2) + b_2^y \sin(\omega_2) + a_3^y \cos(\omega_3)$$

 $x_t = \eta^x + a_0^x \cos(\omega_0) + b_0^x \sin(\omega_0) + a_1^x \cos(\omega_1) + b_1^x \sin(\omega_1) + a_2^x \cos(\omega_2) + b_2^x \sin(\omega_2) + a_3^x \cos(\omega_3)$ given a matrix $\Theta^{\dot{x}\dot{x}}$ of size 8x8 :

$$\Theta^{\dot{x}\dot{x}} = \eta^{x}I_{8} + \frac{1}{2} \begin{pmatrix} 0 & a_{0}^{x} & b_{0}^{x} & a_{1}^{x} & b_{1}^{x} & a_{2}^{x} & b_{2}^{x} & 2a_{3}^{x} \\ 2a_{0}^{x} & a_{1}^{x} & b_{1}^{x} & a_{0}^{x} + a_{2}^{x} & b_{0}^{x} + b_{2}^{x} & a_{1}^{x} + 2a_{3}^{x} & b_{1}^{x} & 2a_{2}^{x} \\ 2b_{0}^{x} & b_{1}^{x} & -a_{1}^{x} & -b_{0}^{x} + b_{2}^{x} & a_{0}^{x} - a_{2}^{x} & -b_{1}^{x} & a_{1}^{x} - a_{3}^{x} & -2b_{2}^{x} \\ 2a_{1}^{x} & a_{0}^{x} + a_{2}^{x} & -b_{0}^{x} + b_{2}^{x} & 2a_{3}^{x} & 0 & a_{0}^{x} + a_{2}^{x} & b_{0}^{x} - b_{2}^{x} & 2a_{1}^{x} \\ 2b_{1}^{x} & a_{0}^{x} + b_{2}^{x} & -b_{0}^{x} - a_{2}^{x} & 0 & -2a_{3}^{x} & -b_{0}^{x} + b_{2}^{x} & a_{0}^{x} - a_{2}^{x} & -2b_{1}^{x} \\ 2b_{1}^{x} & a_{0}^{x} + b_{2}^{x} & -b_{0}^{x} - a_{2}^{x} & 0 & -2a_{3}^{x} & -b_{0}^{x} + b_{2}^{x} & a_{0}^{x} - a_{2}^{x} & -2b_{1}^{x} \\ 2a_{2}^{x} & a_{1}^{x} + 2a_{3}^{x} & -b_{1}^{x} & a_{0}^{x} + a_{2}^{x} & -b_{0}^{x} - b_{2}^{x} & a_{1}^{x} & -b_{1}^{x} & 2a_{0}^{x} \\ 2b_{2}^{x} & b_{1}^{x} & a_{1}^{x} - 2a_{3}^{x} & b_{0}^{x} - b_{2}^{x} & a_{0}^{x} - a_{2}^{x} & -b_{1}^{x} & -a_{1}^{x} & -2b_{0}^{x} \\ 2a_{3}^{x} & a_{2}^{x} & -b_{2}^{x} & a_{1}^{x} & -b_{1}^{x} & a_{0}^{x} & -b_{1}^{x} & a_{0}^{x} & -b_{0}^{x} & 0 \end{pmatrix}$$

Demonstrates that:

 $\dot{z} = \Theta^{\dot{x}\dot{x}}\dot{y}$

where $\dot{y} = Wy, \dot{x} = Wx$, and $\dot{z} = Wz$.

$$\begin{aligned} z_t &= x_t y_t = W^T \dot{x} W^T \dot{y} = W^T W x_t W^T \dot{y} = x_t I_n W^T \dot{y} \\ W^T \dot{z} &= x_t I_n W^T \dot{y} \\ \dot{z} &= W^T x_t I_n W \dot{y} \end{aligned}$$

It is true that;

$$x_t I_n = W^T \Theta^{\dot{x}\dot{x}} W$$

 $\quad \text{and} \quad$

$$\Theta^{\dot{x}\dot{x}} = W^T x_t I_n W$$